The Structure of the Heart			Cardiac Cycle		Cardiovascular System	1	Key Words		Path of Blood Through the Heart		
Left	Rigl	ht			m refers to the heart (cardi				Left Side	Right Side	
The left side of the cardiac muscle has a thicker muscular wall which can contract with more force to circulate oxygenated blood from the lungs through the large systemic circuit to the muscles	The right side of the cardiac muscle contracts to circulate deoxygenated blood from the body through the pulmonary circuit to the lungs		 The cardiac muscle is myogenic Myogenic – The capacity of the heart to generate its own electrical impulse, which causes the cardiac muscle to contract 	nutrients and hormone products as they are	ain. They form a closed system to every corner of the bo produced. The more efficie e capacity to transport oxy removes waste products	bdy and removing waste ent the cardiovascular gen to the muscles and	then ventric • Systole – Contraction then ventric • Depolarisation – Th	 Systole – Contraction of the atria then ventricles Depolarisation – The change in the left atria, through the left av 		Deoxygenated blood from the muscles and organs arrives, back at the right atria through the vena cava. It moves from the right atria, through the right AV valve (tricuspid) into the right ventricle	
and organs			The cardiac cycle refers to the process of cardiac muscle contraction and the movement of blood through its chambers.	Cardiovascular Pulmonary Circuit Systemic Circuit System		(negative • Repolarisation – The) ver e increase in le	ntricle to be forced out of the eft side of the heart into the aorta. The aorta carries this	to be forced out of the right side of the heart not the pulmonary artery. The pulmonary artery		
superior vena cava			One complete cardiac cycle represents the sequence of events involved in. Single heartbeat. It is referred to as a cycle as it	The heart, blood vessels and the blood	Carries deoxygenated blood to the lungs and oxygenated blood back to	Carries oxygenated blood to the body and deoxygenated blood back	our hearts electric (positive)	al charge oxy	genated blood to the muscles and organs.	carries the deoxygenated blood to the lungs.	
pulmonary vein right	pulm vein	nonary	never stops or tires. At rest, one complete cycle takes approximately 0.8 seconds and has two distinct phases;	the heart to the heart Cardiac Output (L/min)			Electi	Inferior vena cava Superior vena cava			
atrium pulmonary valve	left atriu	m	• Diastole – The relaxation phase of the cardiac muscle where the chambers fill	=	Heart Rate x Stroke Volun	ne		Right atrium			
tricuspid	valve		with blood • Systole – The contraction phase of	Diastole	Cardiac Cycle Atrial Systole	Ventricular Systole					
inferior vena cava	valve		cardiac muscle where the blood is forcibly ejected into the aorta and	Diastole	Atrial Systole	Ventricular Systole	PR	nterval ST segn	nent	Pulmonary semilunar valve Pulmonary arteries Capillaries Lungs Pulmonary veins (right & left)	
right ventricle	-left ven	tricle	pulmonary artery	As the atria and then ventricles relax, they		The ventricles contract, increasing the pressure		VV			
	3 M	ain Vessels		expand drawing blood into the atria	The atria contract,	closing the AV valves to prevent back flow into	1	-V V-			
Arteries & Arterioles	С	Capillaries	Veins & Venules	The pressure in the atria increases opening AV valves	forcing remaining blood into the ventricles	the atria SL valves are forced open as blood is ejected from	P wave	1	T wave		
 Arteries and arterioles carry oxygenated blood away from the boat to the muscles and organs. 			 Veins and venules transport deoxygenated blood from the muscles and organs back to the 	Blood passively enters the ventricles		the ventricles into the aorta and pulmonary		QRS complex			
 heart to the muscles and organs The main artery is the aorta which carries blood at high 			heart • The venules leaving the	SL valves are closed to prevent blood from		artery	An electrocardiogram (ECG or EKG) records the electrical signal from your heart to check for different heart conditions.				
pressure directly from the left ventricle	pressure directly from the left		capillaries reconnect to form wly veins. The main vein is the vein	leaving the heart			• P Wave- Depolarisation of atria		nse to SA node triggering	Left ventricle	
 Structure - Larger layer of smooth muscle and elastic tissue to cushion and smooth the 	muscl	into close contact with the cava and carries slow m muscle and organ cells for blood at low pressure ba gaseous exchange the right atria		Applied A	natomy &	Physiology	 T Wave- Ventricular repolarisation PR Interval- Delay of AV node to allow filling of ventricles QRS Complex- Depolarisation of ventricles, triggers main pumping 				
 pulsating blood flow The smooth muscle walls also 	Structure	 Structure - Capillary walls are 1 cell thick which is thin enough to allow gas, nutrients and waste exchange 	• Structure – Small layer of	-Cardiovascular & Respiratory Systems			ST Segment- Beginn	Aorta (b)			
allow them to vasoconstric and vasodilate	allow ga		maintain the slow flow of blood				Conduction	This Causes		Effect	
 Arterioles have a ring of smooth muscle surrounding the entry of a capillary bed called pre- 				Veins	towards the heart Veins have one-way pocket valves which prevent the back 	Cardiovascular System - Pulmonary					
capillary sprinters. These dilate and constrict to control blood			flow of blood	Functions: Transport nutrients such as oxygen and glucose			No electrical impulse	Diastole	Cardiac muscle relaxes	fill with blood opening the AV	
flow into the capillaries					 Protects and fights diseas ernal stability of the body (ho 	se	SA node fires an			valves AV valves are forced	
 Once the electrical impulses' complete, the atria and ventr 			The Conduction System		temperature		electrical impulse through the atria	Atrial systole	Atrial muscle	open and the blood is pushed into the	
and the heart re-fills with blo process signifies one heartbe		gener	ial node, located in the right atrial wall, ates the electrical impulse and fires it	The Heart, Pulmonary and Systemic Circuit			walls to the AV node. Av node delays the impulse		contraction	ventricles until the atria finish contracting	
2 Sino-atrial node		2 Atrio-ve delays it the atria	the atria walls, causing them to contract. entricular node collects the impulse and for approximately 0.1 seconds to allow to finish contracting. It then releases the impulse to the Bundle of His.	Capillary bed of lungs where gas exchange occurs Pulmonary arteries		ange occurs	 Bundle of his splits and passes the impulse through 2 branches to the purkyne fibres in both ventricle walls 	Ventricular syste	Ventricular musc contracts	AV valves close and blood is pushed into	
	Atrio-ventricular node Bundle of His	splits the	e impulse in two ready to be distributed through each separate ventricle	Pulmonary arteries			Atria Diastole	Ventricular Dias	tole The Stage	s of the Cardiac Cycle	
	Bundle branches 4 Bundle branches ca ea ea Purkyne fibres 5 Purkyne eyes fib		ranches carry the impulse to the base of each ventricle me eyes fibres distribute the impulse gh the ventricle walls, causing them to contract	Vena cavae Right atrium Right ventricle Systemic veins		— Left atrium — Left ventricle — Systemic arteries	 The upper chamber of the heart are filled with blood The body via the vena cava to the right atrium The lungs via the pulmonary artery 	 High pressure force atrioventricular va open and ventricu diastole now takes 	lves SL valves SL valves closed	Atrial systole	
	Heart R	ate Regulation		Oxygen poor, CO ₂ - rich blood	Systemic circuit	Oxygen rich, CO ₂ - poor blood			AV valves	0.15	
The heart is myogenic, the brain co	nd decreasing heart r	ate. The CCC receives information from the		No. 1		Atrial Systole	Ventricular Syst	ole	0.3 s		

Capillary bed

of all body tissues where gas exchange

- The atrial contraction

ensures that all the blood

is ejected into the

ventricles

- Ultimately the

ventricular pressure

overcomes that in

the aorta and the pulmonary artery

1 Diastole

The heart is myogenic, the brain controls increasing and decreasing heart rate. The CCC receives information from the sensory nerves which causes the change in HR.

Stroke \		Cardiac	c Output			Heart Rate Regulation					
The volume of blood ejected fr (resting SV, appro	•	The product of HR a		ts response to exercise is two	s a combination of	The control centre stimulates the sympathetic nerv sphincters to vasoconstriction (narrow) and vasodila			thetic nerves cause the arteriolar and pre-capillary as and increasing blood flow to the working muscles		
Stroke volume increases in proportion to ex at approximately 40-60% of working capacit SV plateaus because there is not enough tin blood during the diastolic phase			ty and plateaus during m ved by a slower decrease		The CCC interprets the information received and w increase in heart rate by releasing adrenaline and r system redu	noradrenaline, sending stimu		he accelerator nerve. The parasympathetic nervous			
Stroke volume is dependant on 2 factors; - Venous return - Ventricular elasticity and contractility	no) Initiation				There are 3 main sources that determ	nine the action of the Cardia	ac Control Centre (CCC), the	se are known as control mechanism			
Stroke volume is able to increase due to the Increased venous return, during exercis	Cardiac o			c output response to ing exercise intensity	Neutral Control	Intrinsic	Control	Hormonal Control			
 Increased vehicles returning exercises is a greater volume of blood returning it is sue to the squeezing action of muscue the muscle pump. The Frank-Starling mechanism increased increased SV, due to an increased stret the force of contraction. The lower the maximise this effect, hence why we see trained athletes 	Cardiac Hypertrophy The more efficient the cardiac muscle, the greater volume of blood can be ejected per beat, and therefore the heart rate and volume				 Chemoreceptors located in the muscles, aorta and carotid arteries inform the CCC of chemical changes in the blood stream, such as increased levels of CO2 and lactic acid Proprioceptors located in the muscles, tendons and joints, detect increases and deceases in blood pressure and send an 	(thickness) of the bl	es will affect the viscosity lood and speed of nerve transmissions	spread of electrical activity through the heart			
Stroke volume reaches a plateau during sub - increased heart rate towards maximal inte the ventricles to completely fill with blood is starling mechanism.	Effects of exercise on the Cardiovascular System - Increase in heart rate - Increase in stroke volume - Increase in cardiac output			Baroreceptors located in the blood vessel walls inform the CCC of increased blood	 Venous return changes will affect the stre in the ventricle walls, force ventricular contraction and therefore stroke volum 		 Constrict some blood vessels causing blood to be redistributed to where it is needed Stimulate the breakdown of glycogen providing more fuel for the provider 				
SV _{max}	Frank-Starling		Heart Rate	Stroke Volume	Q	pressure, detect increase in muscle movement, joint and tendon activity			providing more fuel for the muscles		
140 Stroke volum	e	Untrained	70-72 bpm 50 bpm	70 ml 100 ml	5 l/min 5 l/min	Sub-Maximal	Max	imal	Fluctuating		
respon optimie (2 pearl) to	leads to an increased stroke	Untrained	Rest	Sub-Maximal	Maximal						
increa exerci	Stretch of the ventricle walls	HR	70-72 bpm	100-130 bpm	220-age	Rapid	Rapid decrease	Rapid decrease			
0 100% intens		SV	70 ml	100-120 ml	100-120 ml	E Steady decrease	dg l	increase Slower decrease			
Relative exercise intensity	ruque Sustam	Q	5 l/min	10-15 l/min	20-30 l/min	€0 State	또 60 Rapid increase		₽₽ ₽		
Autonomic Ne		Trained	Rest	Sub-Maximal	Maximal	Anticipatory rise Exercise Recovery	Anticipatory rise Exercise Recovery		Anticipatory rise		
	Parasympathetic Nervous	HR	50 bpm	95-120 bpm	220-age	Before exercise Time commences	Before exercise Time commences		Time		
Sympathetic Nervous System	System	SV	100 ml	160–200 ml	160-200 ml	HR response to sub-maximal (aerobic) exercise	HR response to maxim	al (anaerobic) exercise	Heart rate response to fluctuating intensities of exercise		
 Part of the autonomic nervous system responsible for increasing 	 Part of the autonomic nervous system responsible for decreasing 	Q	5 l/min	15-20 l/min	30-40 l/min	e.g running		owing	e.g netball		
heart rate, specifically during exercise	heart rest, specifically during recovery	Ventricular Elasticity and Contractility				Sub-Maximal					
Vasodialate	Vasoconstrict	This is the degree of street has in the cardiac muscle fibre The greater the stretch the greater the force of contraction = increase SV. The ejection			Exercise is low to moderate intensity within the performers aerobic capacity to below the below the anaerobic threshold e.g a slow 10K						
Widening of the arteries, arteriolar and pre-capillary sphincters	Narrowing of arteries, arteriolar and pre-capillary sphincters	fraction	is the % of blood ejecte	ed from the ventricle du	ring VS.	During sustained sub-maximal intensity exercise, he r					
Blood Pooling	Active Recovery		exer	rcise		During sub-maximal exercise we see					
Accumulation of blood in the veins due to gravitational pull and lack of venous return	Low intensity activity post exercise to maintain elevated heart and breathing rate		creased O2 and decrea	overy ased lactic acid, proprioc otors decrease vessel wa		 An initial anticipatory rise in heart rate prior to exercise due to the release of the hormone adrenaline A rapid increase in HR at the start of exercise to increase the blood flow and oxygen delivery in line with exercise intensity A steady state HR throughout the sustained intensity exercise as oxygen supply meets demand An initial rapid decrease in HR as recovery is entered and the action of the muscle pump reduces A more gradual decrease in HR to resting levels 					
Venous	Return	Pocket Valves				Maximal					
The return of the blood to the This is the volume of blood returning to the	came from. This is	because at regular int	rds the heart; it cannot f tervals there are semi lur lood from flowing away	nar pocket valves	Exercise is at a high intensity above a performers aerobic capacity, which will take a performer to exhaustion e.g 100m sprint						
the heart the greater the volume of bloo			Respirat	ory Pump		During maximal intensity exercise, heart rate does	not plateau as exercise inte removal which HR must c		There is a growing demand for oxygen and waste		
Venous return is overcome in a number of ways - Muscle Pump (contraction of veins) - Inspiration / Expiration – Respiratory Pump - Pocket Valves - Smooth Muscle - Gravity - The heart can only pump out as much blood as it receives, so cardiac output is dependent on venous return. A rapid increase in venous return enables a significant increase in stroke volume and therefore cardiac output				al regions cause changes		HR Regulation in Response to E	xercise	HR Regulation in Response to Recovery			
		through them. Duri thoracic and abdor	ing inspiration and exp ninal cavity is created,	to compress, causing bl iration, a pressure differ squeezing the blood bac , the respiratory pump is	rence between the ck to the heart. As	Neural Control Chemoreceptors; increased CO2 and lact Proprioceptors; increased motor a Baroreceptors; increased stretch on ve	ctivity	Neural Control Chemoreceptors; increased O2 and decreased lactic acid Proprioceptors; decreased motor activity Baroreceptors; decreased stretch on vessel walls			
		Smooth Muscle				Intrinsic Control Increased temperature & venous return Decreased temperature & venous return			ased temperature & venous return		
Muscle	The layers of smoot		all vasoconstrict to creat	te venom Otto tone	Hormonal Control Hormonal Control Sympathetic release of adrenaline and noradrenaline Parasympathetic inhibition of adrenaline and noradrenali						
The muscles surrounding the veins expand a		Gra	avity		CCC in medulla oblongata			CCC in medulla oblongata			
a pumping effect. This muscle action is part return durin	Blood from the upper body, above the heart is helped to return by gravity				Sympathetic nervous system increases stimulation of the SA node via the accelerator nerve to increase HR. Greater force of ventricular contraction increases SV. HR X SV = CO increased Parasympathetic nervous system decreases stimulation of the SA node via the vagus nerve to decrease HR. Reduced force of ventricular contraction reduces SV slowly. HR X SV = CO decrease						

Redistribution of Cardiac Output					Vasomoto	or Control	Lung Volume Definition			Average	Average Value at Rest		Change During Exercise	
Cardiac output at rest is approximately 5 l/min. This can rise to more than 20 l/min during intense exercise. The difference in cardiac output from rest to exercise is not					The control centre in the medulla oblongate	Tidal Volume		Volume of air inspired or expired in one breath		500 ml		Increases		
only in volume; where the blood is sent to also changes dramatically At rest, our body primarily serves to digest, filter and excrete. Therefore, the vast majority of the oxygen and nutrient-rich blood is required around the organs					The smooth muscle in the walls of arterial constriction, known as vasomotor tone received, the VCC alters the level of stimu sphincters at differe	Inspiratory Reserve Volume	The amoun above tidal vo	The amount of extra air inhaled above tidal volume during a forceful breath in		3000ml males 2100ml females		Decreases		
a) Skeletal much Skeletal much Skeletal much					Vasomo	Expiratory Reserve Volume		The extra volume of air that can be expired from the lungs		1900 – 3300 ml		Small Decrease		
B % Skin B % Koheya M B % Brann B % Brann B % Brann B % Brann B % Brann B % Brann B % Skin B % Skin Skin Skin Skin Skin Skin Skin Skin				The partial state of smooth muscl		The volume	of air remaining in the							
	b)				The VCC receives i - Chemoreceptors regarding chemical	Residual Volume	U	r maximum forceful expiration	1	l– 1.2 l	Stays	Stays the same		
	▲ Figure 1.2.17 Distribut	ion of cardiac output: a) at rest, and	l b) during exercise		durin - Baroreceptors regarding pres	Minute Ventilation (VE = TV x f)		f air inspired or expired per minute	6 –	6 – 7.5 l/min		5 – 40 breaths per ninute		
Cha	nges in Blood F	low from Rest to	o Maximal Exerc	ise		riction of the arterioles and pre-capillary	The Respiratory Sys	tem		М	echanics of Breath	ing		
Organ	At Rest (cm^3)	% Blood Flow	Maximum Effort (cm^3)	% Blood Flow	 Sympathetic stimulation increases to sphincters to limit blood flow to Sympathetic stimulation decreases 	sphincters Sympathetic stimulation increases to vasoconstrict arterioles and pre-capillary sphincters to limit blood flow to an area such as the muscles at rest Sympathetic stimulation decreases to vasodilate arterioles and pre-capillary sphincters to increase blood flow to an area, such as the muscles during exercise					Movement of the Ribs and Sternum	Volume of the Thoracic Cavity	Pressure in the Lung Tissue	
Skeletal Muscle	1000	20	26000	88	The Respira	, .		Pharynx	Inspiration	External intercostals,	Up and out	Inercoses	Decreases	
Coronary Vessels	250	5	1200	4	Consists of the nose, a series of airways, together as the mechanism for		Trachea	Larynx Bronchioles	(Rest)	diaphragm contract	Up and out	Increases	Decreases	
Skin	500	10	750	2.5	The Respiratory System	n has 2 main functions;				External intercostals, diaphragm, sternocleidomas toid, pectoralis minor contract	Up and out further	Increases more than at rest	Decreases more than at rest	
Kidneys	1000	20	300	1	Pulmonary Ventilation	Gaseous Exchange	Bronchi	Alveoli	Inspiration (Exercise)					
Liver/Gut	1250	25	375	1.25		 A) External respiration; the movement of oxygen into the 								
Brain	750	15	750	2.5		blood stream and carbon dioxide into the lungs			Expiration	External intercostals,	Down and in	Decreases	Increases	
Whole Body	5000	100	30000	100	 The inspiration (breathing in) and expiration (breathing out) of air 	B) Internal respiration; the release of	Definition		(Rest)	diaphragm relax				
	tion of cardiac ou		ody from rest to ex o the skeletal mus			oxygen to respiring cells for energy production and collection of waste products	The network of organs and tissues breathe Consisting of the lungs, blood ves airways	Expiration		Internal intercostals, Rectus abdominis	Down and further in	Decreases	Increases	
Arterioles					The cardiovascular system provides the link the deoxygenated blood to the									
Blood vessels carry oxygenated blood from the arteries to the capillary beds, which can vasodialate and vasoconstrict to regulate blood flow					Response by the respiratory and cardiovas demands of exercise cause changes in both	Four steps for learning the mechanics of breathing	rest is referred t	Inspiration and expiration at rest is referred to as a 'quiet' process and is hard to see		The muscles involved in the mechanics of breathing:				
Arterioles lead to capillary beds, which serve to bring the blood in close contact with organ and muscle cells. These capillaries are the site for oxygen and nutrient exchange with CO2 and waste products					otł An increase in breathing rate means more body if heart rate increases to	1 – Muscles create movement 2 – Which changes the volume 3 – Which changes the pressure (MMVP)	visually. As taught in CPR first aid, it is often easier to feel whether someone is breathing by placing the cheek above the		Inspiration - Rest: external intercostals and diaphragm (contract) - Exercise: in addition, sternocleidomastoid and pectoralis minor (contract). Expiration					
Blood flow int	Blood flow into the capillary beds is controlled by pre- capillary sphincters at the entrance to the capillary bed;		ncters at the	Oxygen (O ₂)	Oxygen (O ₂) Carbon Dioxide (CO ₂)			ose and mouth of a casualty ather than watching for the		 Expiration Rest: external intercostals and diaphragm (relax) Exercise: in addition, internal intercostals and rectus abdominis(cont 				
	 They can constrict, which limits blood flow through the capillary bed they can dilate, which maximises blood flow into the capillary bed 			Oxygen is transported by the blood either Carbon Dioxide (CO 2) – The waste product of aerobic energy production in muscle cells		high pressure to an area of low rise and fall of the chest.								
	Pre-	Capillary Sphinc	ters		- Combines with haemoglobin (Hb) in	Mechanics of	Inspiration at Re	est	Mechanics of Expiration at Rest					
•	•		erioles and capilla ough the capillary		the red blood cells (>97%) - Dissolved in the blood plasma (<3%)	Inspiration is an active process. The inspiration at rest, which contract	Expiration at rest is a passive process. The two muscles responsible for inspiration at rest relax into their natural state, which decreases the volume of							
At rest, a high		•	ibuted to the orga	ns, whereas a	Blood consists of 45% cells and 55% plasma	cavity 1 - The external intercostals, which lie between each rib, contract lifting the rib cage and sternum up and out 2 - The diaphragm, which lies underneath the lungs and separates the thoracic			1 - The extern	the thoracic cavity 1 - The external intercostals relax, lowering the rib cage and sternum down and in 2 - The diaphragm relaxes and returns to its dome shape				
Autovialas to	Thi	itage is distributed is happens because	e	arialas ta tha	Oxygen is the essential gas required for $C_2 = HbCO_2 (23\%)$				2 - T					
	muscles vas	oconstrict to limit	ood flow, while art blood flow pillary beds to allo		aerobic energy production in muscle cells	- Dissolved in blood plasma (7%)	and abdominal cavity, contracts and flattens. As the external intercostals and diaphragm contract, the volume inside the thoracic cavity and space inside the lungs increases. This lowers the pressure below the atmosphere outside the body. All gases move from an area of high				As the external intercostals and diaphragm relax, the volume inside the thoracic cavity and space inside the lungs decrease. This increases the pressure above the atmosphere outside the body; therefore, air is pushed out of the lungs. One resting expiration is complete.			
	•		e capillary beds to the		The greater efficiency of inspiration, transport and use of O $_2$ the greater our	Oxygen is the essential gas required for aerobic energy production in muscle				pressure above				
During exercise roles reverse. Arterioles and pre-capillary sphincters serving the capillary beds surrounding the muscle cells dilate, maximising blood flow, nutrient and		aerobic capacity cells		to low pressure, so air rushes into the lungs. One inspiration is complete.			or the rungs. One resume expiration is complete.							
gaseous exchange, whole constricting to the organs					The ability of haemoglobin to bind to O_2 is influenced by the partial pressure	Mechanics of Inspiration During Exercise				Mechanics of Expiration During Exercise				
a) Vascular b) Precapillary shunt b) Sphincters Metarteriole ThoroughFare channel					of oxygen Haemo	As we start to exercise, the demand for oxygen and production of CO2 increases and so does minute ventilation. Tidal volume can rise from approximately 0.5 litres to 3 litres.			When exercise begins, expiration becomes an active process. The natural relaxation of the external intercostals and diaphragm does not provide enough force to expire quickly enough for breathing rate to increase.					
channel					An iron rich globular protein in red blood oxygen molecules to	2 - Pectoralis minor 2 This creates a greater up and outward movement of the rib cage and sternum. This creates a greater down of the pressure The greater movement increases the volume and decreases the pressure Sternum. The greater movement movement			con	traction	a larger force of			
					When 4 oxygens are bonded to haemoglobities it is partially saturated. Oxygen binding occ				This area	2 - Rect	nal intercostals us abdominis	the rib core and		
Arteriole Venule Arteriole Venule					Oxyhaemoglobin - When o				This creates a greater down and inward movement of the rib cage and sternum. The greater movement decreases the volume and increases the pressure inside the thoracic cavity more than at rest. This increases the rate of					
Figure 1.2.18 A capillary bed serving the organs: a) at rest, where the pre-capillary sphincters are open and blood flows through capillaries, and b) during exercise, where the pre-capillary sphincters are closed and blood flow bypasses the capillary bed					Deoxyhaemoglobin - Haemoglo	bin that is not bound to oxygen	breathing and therefore the volume of air inspired.			breathing and therefore the overall volume of air expired per minute.				

Ventilation	Partial Pressure and Diffusion						
How is ventilation controlled?	Partial Pressure – The pressure exerted by an individual gas held in a mixture of gasses						
 The nervous system can increase or decrease the rate, depth and rhythm of breathing 	Partial pressure of oxygen in the alveoli is higher than the partial pressure of oxygen						
- The respiratory control centre located in the medulla oblongata of the brain controls breathing	in the blood Alveoli PO ₂ = 100mHg						
 An increased concentration of carbon dioxide in the blood stimulates the respiratory centre to increase respiratory rate 	Blood PO ₂ = 40mmHg This is because oxygen has been removed by the working muscles, so the concentration of oxygen in the blood is lower, therefore partial pressure is lowe						
Respiratory Control Centre	 Diffusion – Where gasses move from an area with a higher partial pressure to an 						
The inspiratory centre sends out impulses via the phrenic nerve to the inspiratory muscles	area with a lower partial pressure until equilibrium is reached						
 The expiration centre stimulates the expiration muscles during exercise, when stretch receptors detect changes in the rate and depth of breathing 	• Diffusion Gradient – The difference between any two pressure =60mmHg The bigger or steeper the diffusion gradient the quicker diffusion will occur						
Control of Ventilation	Gaseous Exchange						
During exercise, conditions in the body change, these changes are detected by	Internal Respiration						
 Chemoreceptors – Which detect changes in pH-blood acidity Baroreceptors – Which detect an increase in blood pressure Proprioceptors – Which detect movement in muscles and joints 	 O₂ diffuses from systemic capillaries into cells CO₂ diffuses from cells into systemic capillaries This occurs because of the following factors 						
Respiratory Regulation	 Available surface area, which varies in different tissues Partial pressure gradient 						
Breathing rate and depth is continually adjusted to maintain the appropriate levels of oxygen and CO2 in the blood stream while expending as little respiratory energy as possible	Rate of blood flow varies External Respiration CO ₂ diffuses from pulmonary capillaries into alveoli						
Respiratory Regulation at Rest	 O₂ diffuses from alveoli into pulmonary capillaries This occurs because of the following factors The partial pressure of gasses in the alveoli differ from those in the atmosphere 						
The IC is responsible for the rhythmic cycle of breathing							
Nerve impulses are generated and stimulate the inspiratory muscles causing them to contract, via the	 Humidification of inhaled air Gas exchange between alveoli and pulmonary capillaries 						
- Intercostal nerve to the external intercostals - Phrenic nerve to the diaphragm	Factors influencing External Respiration - Surface area and structure of the respiratory membrane - Partial pressure gradient - Matching levels airflow to pulmonary capillary blood flow						
 This causes the thoracic cavity volume to be increased, lowering the lung air pressure 	Gaseous Exchange at the Alveoli						
The expiratory centre is inactive at rest due to the natural relaxation of the diaphragm and external intercostals	 Alveoli – Tiny air sacs in the lungs that take up the oxygen you breathe in and keep your body going 						
Respiratory Regulation During Exercise							
Sensory nerves relay information to the RCC where a response is initiated by both the IC and EC	A dense capillary network supplies them with oxygen. Their walls are extremely thin (one cell thick) and together they create a huge surface area to allow for. Greater uptake of oxygen. Gasses can easily pass through the thin walls and travel into the blood stream. With training this process of gaseous exchange becomes more efficient						
 Chemoreceptors - Located in the aorta and carotid arteries pick up an increase in blood acidity, increase in CO2 concentration and decrease in O2 concentration. Thermoreceptors - Inform of an increased blood temperature 	 and therefore improves performance. Gaseous exchange is promoted through a number of bodily functions 	·					
 Proprioceptors – Inform of motor activity in the muscles and joints Baroreceptors - Located in the lung tissue and bronchioles, inform of the state of 	- Capillaries very near to alveoli, so diffusion distance is very short						
lung inflation	 Large surface area of alveoli allows diffusion to take place Vast network of capillaries surrounded alveoli which increases surface area 						
 Chemoreceptors, thermoreceptors and proprioceptors inform the IC, which increases the stimulation of the diaphragm and external intercostals to contract with more force 	further Gaseous exchange takes place at 						
 The IC also recruits the additional inspiratory muscles, sternocleidomastoid and pectoralis minor, to contract. This greater force of contraction increases the depth of inspiration. 	Lungs – Between alveoli and surrounding alveolar capillaries Muscles – Between muscles and surrounding blood capillaries						
 Baroreceptors inform the EC on the extent of lung inflation. If the lung tissue begins to become excessively stretched, the EC stimulates additional expiratory muscles, internal intercostals and rectus abdominis, to contract. This causes a forced expiration which reduces the time available for inspiration 	Another at the Muscles Diffusion at the Muscles High PO, in the capillary						
 As exercise intensity increases, the combination of IC and EC control leads to an increased breathing rate and decreased breathing depth to maximise efficient respiration. 	High YCO ₂ in the muscle High PCO ₂ in the muscle Low PCO ₂ in the capillary						
Key Words	Gases move from a high partial pressure to a low						
Respiratory control centre (RCC): A control centre in the medulla oblongata responsible for respiratory regulation	partial pressure across a diffusion gradient						
	Factors affecting diffusion						

.

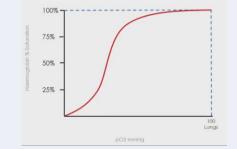
• Inspiratory centre (IC): A control centre within the RCC responsible for

• Expiratory centre (EC): A control centre within the RCC responsible for

inspiration

expiration

Resting Pa	rtial Pressure of C	₂ and CO ₂ a	it the ex	ternal site		Resting Partial Pressure of O_2 and CO_2 at the internal site						
	Alveoli	Direction of Diffusion		Blood Capillaries				Muscle Cell	Direction of Diffusion	Blood Capillaries		
PO2	105	->		40		PO2		105	<	100		
PCO ₂	40	<		46	46			40	->	40		
Resting and Exercising Partial Pressure of O ₂ and CO ₂ at the Internal site								Dissociation of Oxygen from Haemoglobin				
	Muscle	Cell	Direction and Gradient of Diffusion			lood Capillari	es	 If PO₂ is high Haemoglobin will readily combine with oxygen to form Oxyhemoglobin When the haemoglobin combines with the oxygen to form oxyhemoglobin the haemoglobin is said to 				
PO ₂ Rest 40				<— 60		100		be saturated with oxygen				
PO ₂ Exercise 5				<— 95		100		Association – The combining of oxygen v haemoglobin to form oxyhemoglobir				
PCO ₂ Rest	46		-> 6			40						
PCO ₂ Exercise	80			—> 40		40			t ion – the release of oglobin for gaseou	70		
• The binding of O ₂ to haemoglobin depends on the PO ₂ in the Blood and the • Mitochondria - The sites in the muscles where												


bonding strength, or affinity between haemoglobin and oxygen aerobic respiration takes place • There is a high PO₂ in the alveoli, therefore haemoglobin readily

associates with oxygen to dome oxyhemoglobin

High PO₂ —> Haemoglobin associates with oxygen

• As PO₂ decreases in the respiring tissue, haemoglobin more readily dissociates with oxygen to release it for gaseous exchange

Low PO₂ -> Haemoglobin dissociates with oxygen

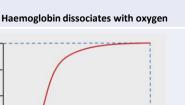
Approx 25% of the oxygen has dissociated from the haemoglobin and is available for diffusion

Summary	The Oxygen Dissociation Curve					
In the alveoli, PO ₂ is high and oxygen readily diffuses into the capillary blood to associate with haemoglobin. The blood is fully associated with oxygen as it leaves the alveoli. In the muscles, PO ₂ is low and oxygen dissociates from haemoglobin and diffuses into the	 In the tissues of other organs a typical PO₂ is 40mmHg. Here haemoglobin has a lower affinity for O₂ and releases some but not all of its O₂ to the tissues When haemoglobin leaves the tissues it is still 75% saturated 					
muscle cell to produce energy for exercise. During exercise, a far greater volume of oxygen is released from the haemoglobin and diffuses into the muscles at a greater rate. This allows the muscles to produce energy, which means a performer can increase the duration and intensity of performance.	100 sector and sector					
100%	0 20 40 60 80 100 PO2 (mm Hg)					
75% - 50% -	Saturation is affected by					

- Decrease in blood acidity (pH)
- Increase in blood temperature
- dioxide concentration

If PO₂ is low haemoglobin will release oxygen. Partial pressure is low at the muscle sites. When the haemoglobin releases the oxygen it is said to dissociate with oxygen. Now the haemoglobin is no longer fully saturated with oxygen Once oxygen dissociates from haemoglobin in the muscles it is picked up and transported to the mitochondria by Myoglobin In the muscle oxygen is stored by myoglobin. This has a high affinity for oxygen and stores the oxygen until it can be transported from the 100% 75% 50% 25% Exercising Tissue

ctors affecting diffus


- Thin membrane Alveoli and capillaries have thin walls so aids diffusion • Short diffusion distance - Distance between the levels and the capillary •
- Large surface area Many alveoli • Warm and damp conditions in the lungs this is an environment gasses like
 - Maintaining diffusion gradient

100


During exercise PO₂ in muscle cells decrease

- When exercising there is an increase in acidity. This is caused by the increase in carbon dioxide in the blood, which results in an increase in the concentration of hydrogen ions in the blood lowering the pH
- During exercise haemoglobin will dissociate approximately 15% more oxygen to the working muscle tissues
- This means that at any given PO₂ for exercising tissue the percentage saturation of oxyhaemoglobin is for lower. Therefore, dissociation of oxygen to the respiring tissues is greater

25%

- At rest PO₂ in the resting muscle tissue approx 40mmHg
 - Approx 75% stays with the haemoglobin

capillaries to the mitochondrial

40

60

PO2 (mm Hg)

80

- At 15mmHg O₂ in the muscle cells, approximately 75% oxygen dissociates from haemoglobin **The Bohr Shift**